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This paper reports on a study of the decimal-number numeration knowledge 
held by 112 Year 5 students who had completed formal instruction in tenths 
and hundredths. It explores the interaction between available and accessible 
place-value and regrouping knowledge. Available knowledge was elicited 
through diagnostic test items; accessible knowledge was elicited through an 
error analysis of the students' numeration procedures used in addition and 
subtraction algorithms. The results showed that performance varied 
markedly between classes (indicating an instructional effect), that regrouping 
was more difficult than place value, and that there was generally a direct 
relationship between available and accessible knowledge (although there 
were many instances of high-available and low-accessible knowledge). 

According to Greeno and Riley (1987), the fundamental question of 
understanding a cognitive procedure is whether a person performs with some 
understanding or whether the performance is rote or mechanical. Correct responses 
may be based on inappropriate knowledge (e.g., claiming 4.52 is larger than 4.3 because 
it has more digits), and incorrect responses may be based on appropriate knowledge 
(e.g., knowing that 43 -17 is 4 less 43 -13 but counting back incorrectly to get 27 
instead of 26). Therefore, performance alone is an insufficient indicator of the presence 
or absence of understanding. Moreover, because "one can never be certain whether 
impaired performance is due to faulty or absent use of well-articulated (memory) 
knowledge or 'efficient' use of inadequate knowledge" (Cavanaugh & Perlmutter, 1982, 
p. 15), it is difficult to distinguish between unavailability (a knowledge limitation) and 
inaccessibility (a performance limitation). 

Bransford, Sherwood, Vye and Reiser (1986) argued that, whilst acquisition 
(availability) of relevant knowledge provides no guarantee of access, poor performance 
can often be attributed to access failure (not unavailability). Schoenfeld (1985) 
concurred: "The issue for students is often not how efficiently they will use the relevant. 
resources potentially at their disposal. It is whether they will allow themselves access to 
those resources at all" (p. 13). Therefore, as Prawat (1989) claimed, teaching for 
accessibility is a much more complex process than teaching for availability (i.e., 
knowledge acquisition). 

Decimal-number numeration knowledge. In her study of students' acquisition 
of,. and access to, the cognitions required to function competently with decimal 
numbers, Baturo (1998) tested 173 Year 6 students from two schools (different 
socioeconomic backgrounds) with a pencil-and-paper diagnostic instrument to 
determine the students' available knowledge of the numeration processes, namely, 
number identification, place value, counting, regrouping, comparing, ordering, 
approximating and estimating for tenths and hundredths. As a result of analyses of the 
students' performances and of the cognitions embedded in decimal-number numeration 
processes, Baturo developed a numeration model (see Figure 1) to show these 
cognitions and how they may be connected. 

The model depicts decimal-number numeration as having three levels of 
knowledge that are hierarchical in nature and therefore represent a sequence of 
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cognitive complexity. Level 1 knowledge is the baseline knowledge associated with 
position, base and order, without which students cannot function with understanding in 
numeration tasks. Baseline knowledge is unary in nature comprising static memory
objects (Derry, 1996) from which all decimal-number numeration knowledge is derived. 
Level 2 knowledge is the "linking" knowledge associated with unitisation (Behr, Harel, 
Post & Lesh, 1994; Lamon, 1996) and equivalence, both of which are derived from the 
notion of base. It is binary in nature and therefore represents relational mappings 
(Halford, 1993). Level 3 knowledge is the structural knowledge that provides the 
superstructure for integrating all levels and is associated with reunitisation, additive 
structure and multiplicative structure. It incorporates ternary relations that are the basis 
of system mappings (Halford, 1993). 

POSITION 

- associated name 
- role of decimal 

point 
- zero 

- across places 
34 t= 30 t+4 t 

- within places 
4t=4t+Ot 
or3t+lt 

and so on 

VALUE 

REUNITISING 

Type A (partitioning) 
6t=60h 

Type B (grouping) 
60h=6t 

:................. Type C 

6t =5t+ lOh 

- across places 

- across places 
H>T>O>t>h 

- within places 
0<1<2<3 ... <9 

(4 t x 10 = 4 ones) 

- within places 
(4t=4 x 1 t) 

Figure 1. Cognitions and their connections embedded in the decimal number system (Baturo, 1997). 

Within the model, multiplicative structure relates position and base into an 
exponential system (Behr, Harel, Post, & Lesh, 1994; Smith & Confrey, 1994) to give 
value and order. It is continuous and bi-directional and, for binary relationships, relates 
all adjacent places to the left through multiplication by 10 and to the right through 
division by 10. (For ternary relationships, it relates all adjacent-but-one places to the 
left through multiplication by 100 and to the right through division by 100.) It is the 
knowledge structure that underlies the concept of place value, the development of 
which is a major teaching focus in the primary school. This structure conflicts with the 
pattern of the place names which is syntactic in nature (about the ones), a conflict which 
is compounded if the decimal point is seen as having a position similar to ones (Baturo, 
1997). 

Also within the model, unitisation, equivalence and reunitisation underlie the 
decimal-number numeration processes of renaming (reunitisation Types A and B) and 
regrouping (reunitisation Type C). These processes are particularly important in 
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understanding decimal-number numeration beyond tenths (i.e., hundredths and 
thousandths). Decimal numbers can be named in standard fonn (e.g., 2.43 as 2 ones 4 
tenths 3 hundredths), renamed (e.g., 2.43 as 2 ones 43 hundredths), and regrouped (e.g., 
2.43 as 2 ones 3 tenths and 13 hundredths). 

Available knowledge of decimal-number numeration can be directly probed, but 
accessible knowledge is mainly evident from situations where knowledge is applied. 
This paper reports on one study which compared Year 5 students' available knowledge 
of place value and regrouping for decimal numbers (limited to hundredths) as measured 
by diagnostic items with accessible knowledge as measured by error analysis of 
applications of this knowledge within addition and subtraction situations. 

Method 

Subjects: The study involved 112 Year 5 students from two schools each of 
which had three classes of Year 5 students. School A's clientele (Classes A, B, C) was 
drawn from a high socioeconomic background while School B's clientele (Classes D, E, 
F) was drawn from a low-to-middle socioeconomic background. 

Instruments: The first instrument was a diagnostic test developed to cover all the 
numeration processes prescribed in the Queensland mathematics syllabus. These were 
categorised as number identification (identifying decimal numbers represented in 
pictorial, word and symbolic forms), place value, regrouping, counting, comparing, 
ordering, approximating and estimating. Because the numeration items were designed 
to probe available semantic knowledge, several different items were developed to assess 
each numeration component. The nonprototypic (Herhskowitz, 1989) items designed to 
create "expectation violations" (Schank, 1986) yielded insight into the robustness of the 
students' available knowledge of place value and regrouping (see Figure 2). 

PLACE VALUE 

Write the number that has: 

2 tenths, 5 hundredths, 4 ones 
19 ones, 2 hundredths 
7 ones, 4 tenths 
3 hundredths, 6 tenths 
8 tenths 
5 hundredths 

REGROUPING 

Write the numbers. 

86 tenths 3 hundredths 
7 tenths 14 hundredths 

Figure 2. Test items to probe decimal-number place value and regrouping. 

The second instrument comprised two computation tasks. The focus of these 
tasks was to determine the accessibility of the students' place value and regrouping 
knowledge, the availability of which was detennined from the diagnostic tasks (see 
Figure 2). The addition task (23.5 + 3.67) was designed to probe the application of 
decimal-number place value knowledge. For example, it was anticipated that students 
with low available place value knowledge would merely align the digits from left to 
right or from right to left without any regard to the values of the digits. This task was 
thus seen as a means of determining whether students with high available place value 
knowledge would transfer this knowledge to a different task (and therefore indicating a 
metacognitive awareness as well as a procedural awareness of place value). Whilst 
there was also a regrouping component, this was not considered to be as cognitively 
demanding as the regroupings required in the subtraction task. 
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The subtraction task (8.2 - 1.76) was designed to probe accessible decimal
number regrouping knowledge with respect to knowing when to regroup (e.g., when 
having to subtract the 6 hundredths) and how to regroup prototypic instances (e.g., 
when having to subtract the 7 tenths). Whilst there was also a place value component to 
this task, it was anticipated that students with low available place value knowledge 
would either write the "larger number" (Le., 1.76) on top (and therefore have no chance 
of a correct solution) or align the places from left to right, a syntactic procedure that 
would produce the correct alignment without any regard to knowing that like places 
should be aligned. 

Procedure: The diagnostic test was administered, at the same time, to all students 
within each school with the tasks being read to students to overcome possible reading 
problems. The computation tasks were administered to the students following the test. 
Students were required to record their working for the computation tasks. Most 
students completed the test and the computation tasks in about 20 minutes. 

Analysis: Individual and class performances (available knowledge from the 
diagnostic test) were collated with respect to place value and regrouping and then 
individual performance was categorised as low, medium, or high. The classification 
criteria for the 6 place value items and the 2 regrouping items were: low (place value -
::;2; regrouping - 0); medium (place value - 3 or 4; regrouping -1); high (place value
~5; regrouping - 2). For the computation items, performance was analysed in terms of 
flow charts that showed all options with respect to place value and regrouping in the 
solution procedures. Comparisons were then made between each student's available 
and accessible place value and regrouping knowledge. 

Results 

Table 1 provides the class means for the place value and regrouping components 
of the test and the computation tasks. As shown in this table, there were major class and 
school differences within and between all components. (Independent Sample T -tests 
revealed that many differences were significant at p<O.OOI.) In particular, 
performances were more impoverished for subtraction than for addition. 

Table 1 
Class Means (%) for Place Value, Regrouping and Computation. 

School A School B 

Items Class A Class B Class C ClassD Class E Class F 
Place value 58.9 44.9 78.9 31.0 28.9 54.7 
Regrouping 40.8 37.5 43.6 28.1 42.6 40.9 
23.5+3.67 73.7 68.8 62.5 62.5 35.3 81.8 
8.2 .... 1.76 15.8 37.5 31.3 04.2 00.0 36.4 

Available knowledge: From the test results, students were classified as high, 
medium and low with respect to available place value and regrouping knowledge. 
Table 2 shows the number and percentage of students within each categorisation. All 
but one high regrouping student were also high place value students. Approximately 
one-third (23) of the high place value students revealed low re grouping knowledge. 

Table 2 reveals a markedly different category distribution for available place 
value knowledge than for available regrouping knowledge.. The number of high 
available regrouping students is significantly less than the number of high available 
place value students. This indicates the inherent complexity in regrouping - having 
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high available place value knowledge appears to be an essential but not sufficient 
prerequisite for high regrouping know ledge. 

Table 2 
Number and Percent of Students in Each Available Knowledge Category with Respect to Place 
Value and Regrouping Knowledge. 

Knowledge 
Place value 
Regrouping 

Available knowledge categories 
Low 

37 (33.0%) 
59 (52.7%) 

Medium 
17 (15.2%) 
42 (37.5%) 

High 
58 (51.8%) 
11 (09.8%) 

Accessible knowledge: Details of the students' performances on the two 
computation tasks are shown on the flow charts in Figures 3 and 4. 

Figure 3 reveals that, as expected, the most critical point in the solution of this 
addition task which involved decimal numbers with different whole-number "lengths" 
was in the alignment of the numbers. Only one third of the students knew to align and 
add like digits. Of these 77 students, 49 (representing 84.5% of their category) had 
exhibited high available place value knowledge, 12 (representing 70.6% of their 
category) had exhibited medium available place value knowledge, and 15 (representing 
40.5% of their category) had exhibited low available place value knowledge. These 
results indicate that having high available place value knowledge is not a sufficient 
indicator of having accessible knowledge 

Yes (76 

~ 
C Correct ) 

_ answer _ 

Yes (77 - 68.8% )-- ~
Left aligned - 26 (7 HPV) 
DP "place" - 6 (5 LPV) 

No (35) Changed value - 1 (HPV) 
Added nonaligned places - 2 

(1 HPV) 

Figure 3: Students' performances on the addition task (23.5 + 3.67). 
(HPV = high available place value knowledge; LPV = low available place value knowledge.) 

Figure 4 reveals that 12 students who had exhibited high available place value 
knowledge (HPV) were unable to access this knowledge when preparing the decimal 
numbers for subtraction. The HPV student who had aligned the subtraction numbers 
incorrectly had also aligned the addition numbers incorrectly. Figure 4 also reveals the 
complexity of regrouping (in knowing when and how to regroup) with only 21 of the 73 
students (28.8%) who had prepared the numbers correctly being able to complete the 
regrouping component correctly. Of these 21 students, 4 (representing 36.4% of their 
category) had exhibited high available place value knowledge, 13 (representing 31.0% 
of their category) had exhibited medium regrouping knowledge, and 4 (representing 
06.8%) of their category) had exhibited low available regrouping knowledge. 
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Yes (21 - 18.8%) 
4 HRG, 13 MRG, 

4LRG 

Yes (73 - 65.2%)-

Yes (95 - 84.8%)- No (17 -7 HPV) 

No (52) 

,--~~! Right aligned - 9 (1 HPV) 
! Changed value - 3 (IHPV) 
! Added - 10 (1 HRG) 

•• l Regrouping omitted 
I tIh - 40 (1 HPV); Olt - 2; both - 5 
! Regrouping incorrect 
I tIh - 1 (HPV); Olt - 2; both - 2 

Figure 4: Students' performances on the subtraction task (8.2 - 1.76). 
(HPV = high available place value knowledge; HRGIMRGILRG = highlmediumllow available 

regrouping knowledge.) 

Comparing available and accessible knowledge: Table 3 provides a cross
tabulation of students' available and accessible place value and regrouping knowledge 
with respect to the performance categories. It presents accessible regrouping data as 
Regrouping P (referring to the prototypic, that is, standardl"simple" regrouping) and 
Regrouping NP (referring to the nonprototypic, that is, involving an ''understood'' zero· 
regrouping). Table 3 also contains reductions in the response totals for regrouping 
because incorrect setting up of the subtraction task resulted in removing the need for 
regrouping. It also includes the results of the 29 students (20 low, 8 medium, 1 high) 
who had not prepared the subtraction correctly but had encountered an instance where 
regrouping (mainly prototypic) was required. Of these 29 students, 15 (11 low, 4 
medium) indicated that they knew when and how to iegroup. 

Table 3 shows a strong direct relationship between available and accessible place 
value knowledge, a modest relationship for accessible nonprototypic regrouping, but no 
relationship for accessible prototypic regrouping. For both regroupings, the relationship 
was not supported for high available knowledge. This may have been a consequence of 
the distribution difference between available place value and regrouping knowledge (see 
Table 2). 

Table 3 
Percent and Number of Students' Accessible Place Value and Regrouping Knowledge With 
Respect to the Available Knowledge Categories. 

Accessible knowledge 
Place value 
Regrouping 
-RGP 
-RGNP 

Available knowledge categories 
Low Medium High 

45.9% (17/37) 70.6% (12117) 87.9% (51/58) 

62.7% (37/59) 78.6% (33/42) 63.6% (7111) 
10.2% (6/59) 42.9% (18/42) 45.5% (5111) 

Note. RGP = prototypic regrouping; RGNP = nonprototypic regrouping. 
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Discussion and conclusion 

Students' perfonnance on place-value, regrouping and computation items varied 
markedly between classes and schools (see Table 1), but overall, performance was 
better on place-value items than re grouping (see Table 2). It was also evident that 
regrouping was. much more difficult for subtraction than for addition (see Figures 3 and 
4). The significant differences within and between classes and schools could be 
attributed to instructional experiences, particularly to certain surface forms that, for 
some classes, appeared to have been over-practised (e.g., inserting a "rightmost zero"). 
The test revealed that the prerequisite whole-number and fraction concepts and 
processes (e.g., Resnick et al., 1989) were impoverished in some classes. Effective 
instruction needs to focus on establishing the prerequisite knowledge and by ensuring 
that prior learning is connected to new learning. Special attention needs to be given to 
place value, particularly for decimal numbers of unequal length, and for regrouping, 
particularly for subtraction. 

The results for regrouping warrant an investigation into the mathematical structure 
of both types of regrouping and into how students acquire and access both types, 
particularly when internal and rightmost zeros are involved. Figure 1 shows that 
regrouping is a Type C reunitising construct that has been classified as Level 3 
knowledge (structural knowledge). Level 3 knowledge· encompasses ternary 
relationships (Halford, 1993) which are more cognitively complex than the binary or 
unary relationships of Levels 2 and 1 respectively. Type C reunitisation is more 
difficult than Types A and B because the decomposition within the given unit links it to 
additive structure (another Level 3 knowledge type). The complexity of regrouping and 
the current curriculum trend promoting mental and calculator computation raise 
pedagogical issues. For example, should time-consuming pencil-and-paper computation 
be eliminated from modern curricula? 

This paper takes the stance that there is a place for all types of computation. 
Calculators and/or mental computation should be employed when speedy and accurate 
calculations are required, and pencil-and-paper computation should be employed as a 
vehicle for promoting understanding of mathematical principles rather than procedural 
proficiency. For instance, underlying pencil-and-paper computation are mathematical 
principles (e.g., set inclusion which develops the understanding that like things only can 
be added and subtracted; the commutative and distributive laws) that apply across 
whole-number, fraction and algebra domains. The structural knowledge embedded in 
computational knowledge suggests that a study of computation (not merely 
computational procedures for "getting an answer") should be undertaken at the upper 
primary and lower secondary levels. 

The analysis· of the students' computations indicated the existence of rules that 
appeared not to have been identified by the literature. For example, several students 
appeared to align numbers from the left, irrespective of place value. As well, many 
students seemed to employ an "equalising" procedure to ensure that the given numbers 
had the same "length". Whilst most students inserted a rightmost zero (which did not 
change the value of the given number), some children inserted a zero internally (i.e., 
immediately after the decimal point) so that the value was changed. These latter 
students may employ a rule "zero has no value" no matter where it is placed. 

Whilst the data indicated that there was generally a direct relationship between 
available and accessible knowledge (see Table 3), it also indicated what is evident to 
any teacher - that correct individual performance is possible without understanding and 
that availability of knowledge does not mean it will be used (accessed). Students who 
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failed to access their available knowledge may have lacked awareness (a key 
metastrategy in Prawat's, 1989, theory of accessibility) of the role of place value and 
regrouping in computation. 

The low-available knowledge students who "accessed" unavailable appeared to be 
following procedures routinised from overpractised whole-number procedures (Hiebert 
& Wearne, 1985), thus bypassing the need to access available semantic knowledge by 
replacing it with now available syntactic knowledge. It seems doubtful that these 
students demonstrated a semantic understanding of the role of place value in the 
addition operation and it seems more likely that they had applied the rule "line up the 
decimals". As well, there were medium- and high-available place-value students who 
did not correctly align the decimal numbers in either computation. Similarly, there were 
correct low-available and incorrect high-available regrouping students. In several cases, 
errors resulted from failure to activate a procedure rather than from incorrect execution 
of the procedure. 
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